Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 34, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504299

RESUMO

Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.


Assuntos
Doenças dos Roedores , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Camundongos , Animais , Suínos , Sorogrupo , Forma Celular , Virulência , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
2.
Pathogens ; 12(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003790

RESUMO

Streptococcus suis serotype 2 is an important swine bacterial pathogen causing sudden death, septic shock, and meningitis. However, serotype 2 strains are phenotypically and genotypically heterogeneous and composed of a multitude of sequence types (STs) whose distributions greatly vary worldwide. It has been previously shown that the lipoprotein (LPP) maturation enzymes diacylglyceryl transferase (Lgt) and signal peptidase (Lsp) significantly modulate the inflammatory host response and play a differential role in virulence depending on the genetic background of the strain. Differently from Eurasian ST1/ST7 strains, the capsular polysaccharide of a North American S. suis serotype 2 ST25 representative strain only partially masks sub-capsular domains and bacterial wall components. Thus, our hypothesis is that since LPPs would be more surface exposed in ST25 strains than in their ST1 or ST7 counterparts, the maturation enzymes would play a more important role in the pathogenesis of the infection caused by the North American strain. Using isogenic Δlgt and Δlsp mutants derived from the wild-type ST25 strain, our studies suggest that these enzymes do not seem to play a role in the interaction between S. suis and epithelial and endothelial cells, regardless of the genetics background of the strain used. However, a role in the formation of biofilms (also independently of the STs) has been demonstrated. Moreover, the involvement of LPP dendritic cell activation in vitro seems to be somehow more pronounced with the ST25 strain. Finally, the Lgt enzyme seems to play a more important role in the virulence of the ST25 strain. Although some differences between STs could be observed, our original hypothesis that LPPs would be significantly more important in ST25 strains due to a better bacterial surface exposition could not be confirmed.

3.
Vet Res ; 54(1): 1, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604750

RESUMO

Streptococcus suis serotype 2 is an important bacterial pathogen of swine, responsible for substantial economic losses to the swine industry worldwide. The knowledge on the pathogenesis of the infection caused by S. suis is still poorly known. It has been previously described that S. suis possesses at least one lipoprotein with double laminin and zinc (Zn)-binding properties, which was described in the literature as either laminin-binding protein (Lmb, as in the current study), lipoprotein 103, CDS 0330 or AdcAII. In the present study, the role of the Lmb in the pathogenesis of the infection caused by S. suis serotype 2 was dissected. Using isogenic mutants, results showed that Lmb does not play an important role in the laminin-binding activity of S. suis, even when clearly exposed at the bacterial surface. In addition, the presence of this lipoprotein does not influence bacterial adhesion to and invasion of porcine respiratory epithelial and brain endothelial cells and it does not increase the susceptibility of S. suis to phagocytosis. On the other hand, the Lmb was shown to play an important role as cytokine activator when tested in vitro with dendritic cells. Finally, this lipoprotein plays a critical role in Zn acquisition from the host environment allowing bacteria to grow in vivo. The significant lower virulence of the Lmb defective mutant may be related to a combination of a lower bacterial survival due to the incapacity to acquire Zn from their surrounding milieu and a reduced cytokine activation.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Suínos , Laminina/genética , Laminina/metabolismo , Sorogrupo , Citocinas/metabolismo , Células Endoteliais , Zinco/metabolismo , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Doenças dos Suínos/microbiologia
4.
Microorganisms ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835511

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.

5.
PLoS One ; 14(10): e0223864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600314

RESUMO

Streptococcus suis is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, of which serotype 2 is the most widespread, with serotype 14 also causing infections in humans in South-East Asia. Knowledge of its pathogenesis and virulence are almost exclusively based on these two serotypes. Though serotype 9 is responsible for the greatest number of porcine cases in Spain, the Netherlands and Germany, very little information is currently available regarding this serotype. Of the different virulence factors, the capsular polysaccharide (CPS) is required for S. suis virulence as it promotes resistance to phagocytosis and killing and masks surface components responsible for host cell activation. However, these roles have been described for serotypes 2 and 14, whose CPSs are structurally and compositionally similar, both containing sialic acid. Consequently, we evaluated herein the interactions of serotype 9 with host cells and the role of its CPS, which greatly differs from those of serotypes 2 and 14. Results demonstrated that serotype 9 adhesion to but not invasion of respiratory epithelial cells was greater than that of serotypes 2 and 14. Furthermore serotype 9 was more internalized by macrophages but equally resistant to whole blood killing. Though recognition of serotypes 2, 9 and 14 by DCs required MyD88-dependent signaling, in vitro pro-inflammatory mediator production induced by serotype 9 was much lower. In vivo, however, serotype 9 causes an exacerbated inflammatory response, which combined with persistent bacterial presence, is probably responsible for host death during the systemic infection. Though presence of the serotype 9 CPS masks surface components less efficiently than those of serotypes 2 and 14, the serotype 9 CPS remains critical for virulence as it is required for survival in blood and development of clinical disease, and this regardless of its unique composition and structure.


Assuntos
Cápsulas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Mucosa Respiratória/microbiologia , Sorogrupo , Streptococcus suis/patogenicidade , Animais , Aderência Bacteriana , Feminino , Camundongos , Streptococcus suis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...